본문 바로가기

분류 전체보기67

[LLM/NLP] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs viaReinforcement Learning TitleDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement LearningLinkshttps://arxiv.org/abs/2501.12948https://huggingface.co/deepseek-ai/DeepSeek-R1https://github.com/deepseek-ai/DeepSeek-R1Summary1. DeepSeek-R1 개요DeepSeek-R1은 범용 대규모 언어 모델을 오픈소스로 구현하고, 이를 효과적으로 학습·배포할 수 있는 새로운 접근 방식을 제안하는 연구입니다. 전 세계 다양한 데이터셋을 ‘글로벌 디스패칭(Global Dispatching)’이라는 독특한 전략으로 수집·전처리하여, 고품질 언어 표현 능.. 2025. 2. 9.
[AD] Deep Learning Recommendation Model for Personalization and Recommendation Systems TitleDeep Learning Recommendation Model for Personalization and Recommendation SystemsLinkshttps://arxiv.org/abs/1906.00091Summary1. 왜 딥러닝 추천 모델(DLRM)이 중요한가?개인화된 광고의 성장과 대규모 데이터인터넷 사용 시간이 증가함에 따라, 대규모 유저 데이터를 바탕으로 한 개인화 광고의 가치가 커지고 있습니다.유저가 남긴 수많은 클릭 로그, 관심사 태그, 시간대, 디바이스 정보 등은 방대한 피처(Feature) 공간을 형성하게 됩니다.추천 시스템은 이러한 이질적인 피처들을 동시에 학습하여, 정확도 높은 광고 추천을 실현해야 합니다.기존 추천 모델의 한계전통적인 콜라보레이티브 필터링(Collab.. 2025. 2. 9.
오픈AI ChatGPT 버전 비교: o1, o3-mini, o3-mini-high 특징과 활용 1. ChatGPT o1, o3-mini, o3-mini-high 간단 소개OpenAI가 선보인 ChatGPT 시리즈는 꾸준한 업데이트와 개선을 통해 자연어 처리(NLP)와 논리적 추론(Reasoning) 역량을 점차 확장해 왔습니다. 최근 공개된 o3-mini와 o3-mini-high는 코딩, 수학, 논리 문제 해결과 같은 기술적인 작업에 특화된 모델로 주목받고 있습니다.왜 이 모델들이 중요한가?o1: 전반적인 지식과 추론 능력이 뛰어나며, 비즈니스, 법률, 프로젝트 관리 등 폭넓은 응용 분야를 커버.o3-mini: 코딩, 수학, 과학 분야에서 탁월한 속도 및 정확도를 제공하며, 무료 사용자도 사용 가능.o3-mini-high: 고급 코딩과 복잡한 수학 문제 해결에 더욱 최적화된 모델로, 유료(Plus.. 2025. 2. 9.
[LLM/NLP] Banishing LLM Hallucinations Requires RethinkingGeneralization TitleBanishing LLM Hallucinations Requires Rethinking GeneralizationLinksarxivhttps://www.lamini.ai/Summary이 연구는 LLM의 일반적인 hallucination problem (사실과 다른 내용을 그럴듯해 보이게 생성해내는 문제) 에 관하여 어떻게 해결할 수 있을지에 대한 방법 및 새로운 모델 구조를 제안한다. 좀 더 구체적으로 답을 구하는 문제들은,What causes hallucinations?Are there other architectures with low generalization error and low hallucinations?Are they computationally feasible?일반적으로 LLM은.. 2024. 7. 8.