chain of thought1 [ML/Data] Data Recipes for Reasoning Models TitleData Recipes for Reasoning ModelsLinkshttps://arxiv.org/abs/2506.04178Summary이 논문은 추론 능력을 갖춘 모델을 위한 SFT(Supervised Fine-Tuning) 데이터셋 구성 과정을 체계적으로 분석하고, 데이터 품질에 대한 기존의 통념을 재검토하고자 한다. 최근 수학, 코딩, 과학 등 고차원 추론을 요하는 분야에서 강력한 성능을 보이는 모델들은 보통 강력한 베이스 모델 위에, SFT나 RL(Reinforcement Learning) 등 후처리 학습(post-training) 단계를 거쳐 추론 능력을 부여받는다. 이 과정을 통해 모델은 “생각의 흐름(thinking tokens)“을 생성하며 답을 유도할 수 있게 된다.논문은 특히.. 2025. 6. 25. 이전 1 다음